Chance-Constrained Model Predictive Control for Drinking Water Networks

نویسنده

  • J. M. Grosso
چکیده

This paper addresses a chance-constrained model predictive control (CC-MPC) strategy for the management of drinking water networks (DWNs) based on a finite horizon stochastic optimisation problem with joint probabilistic (chance) constraints. In this approach, water demands are considered additive stochastic disturbances with non-stationary uncertainty description, unbounded support and known (or approximated) quasi-concave probabilistic distribution. A deterministic equivalent of the stochastic problem is formulated using Boole’s inequality to decompose joint chance constraints into single chance constraints and by considering a uniform allocation of risk to bound these later constraints. The resultant deterministic-equivalent optimisation problem is suitable to be solved with tractable quadratic programming (QP) or second order cone programming (SOCP) algorithms. The reformulation allows to explicitly and easily propagate uncertainty over the prediction horizon, and leads to a cost-efficient management of risk that consists in a dynamic back-off to avoid frequent violation of constraints. Results Email address: [email protected] (J.M. Grosso) Preprint submitted to Journal of Process Control January 14, 2014 of applying the proposed approach to a real case study –the Barcelona DWN (Spain)– have shown that the network performance (in terms of operational costs) and the necessary back-off (to cope with stochastic disturbances) are optimised simultaneously within a single problem, keeping tractability of the solution, even in large-scale networks. The general formulation of the approach and the automatic computation of proper back-off within the MPC framework replace the need of experience-based heuristics or bi-level optimisation schemes that might compromise the trade-off between profits, reliability and computational burden.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Model Predictive Control Approaches applied to Drinking Water Networks

Control of drinking water networks is an arduous task given their size and the presence of uncertainty in water demand. It is necessary to impose different constraints for ensuring a reliable water supply in the most economic and safe ways. To cope with uncertainty in system disturbances due to the stochastic water demand/consumption, and optimize operational costs, this paper proposes three st...

متن کامل

Stochastic Model Predictive Control for Water Transport Networks with Demand Forecast Uncertainty

Two formulations of the stochastic model predictive control (SMPC) problem for the control of large-scale drinking water networks are presented in this chapter. The first approach, named chance-constrained MPC, makes use of the assumption that the uncertain future water demands follows some known continuous probability distribution while at the same time certain risk (probability) for the state...

متن کامل

Learning-based tuning of supervisory model predictive control for drinking water networks

This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, su...

متن کامل

Water demand forecasting for the optimal operation of large - scale drinking water networks : The Barcelona Case Study . ?

Drinking Water Networks (DWN) are large-scale multiple-input multiple-output systems with uncertain disturbances (such as the water demand from the consumers) and involve components of linear, non-linear and switching nature. Operating, safety and quality constraints deem it important for the state and the input of such systems to be constrained into a given domain. Moreover, DWNs’ operation is...

متن کامل

Constrained Model Predictive Control of Low-power Industrial Gas Turbine

Nowadays, extensive research has been conducted for gas turbine engines control due to growing importance of gas turbine engines for different industries and the need to design a suitable control system for a gas turbine as the heart of the industry. In order to design gas turbine control system, various control variables can be used, but in the meantime, fuel flow inserting into combustion cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014